【斜面上の深礎基礎設計施工便覧 令和3年度版】

【A5判 300頁 本体価格 5,500円】 平成24年4月23日 初 版第1刷発行 令和 3年10月26日 改訂版第1刷発行 令和 6年 8月30日 第2刷発行

目	次	

I . 総	論	1
第1章	本書の適用範囲	1
第2章	設計一般	4
2.1	性能規定の構造と性能検証の基本体系	4
2.2	橋の性能	8
2.3	橋の耐荷性能	10
2.4	橋の耐久性能	14
2.5	橋の使用目的との適合性を満足するために必要なその他の性能	15
第3章	構造計画	16
3.1	一 般	16
3.2	計画	16
3.3	調 査	24
3.3	3.1 一 般	24
3.3	3.2 架橋環境条件の調査	25
3.5	3.3 使用材料の特性及び製造に関する調査	26
3.3	3.4 施工条件の調査	26
3.5	3.5 維持管理条件の調査	27
3.5	3.6 調査の例	27
3.4	構造の選定及び部材配置にあたっての配慮事項	30
3.4	4.1 一 般	30
3.4	4.2 急激に耐力を失わない部材や構造とすることへの配慮	32
3.4	4.3 施工品質の確保への配慮	32
3.5	使用する材料の選定	33
3.	5.1 一 般	33
3.	5.2 使用材料	36
第4章	構造解析	39
4.1	一 般	39
4.2	作 用	40
4.5	2.1 橋の耐荷性能に関する設計で考慮する作用	40
4.5	2.2 橋の耐久性能や橋の使用目的との適合性を満足するために	
	必要なその他の性能に関する設計で考慮する作用	41
第5章	施工時の検討	43
Ⅱ.地盤	盤に関する調査及び特性値	47
第1章	地盤調査一般	47
1.1	地盤調査の基本	47
1.2	注意すべき地形・地質	51
1.3	予備調査	63
1.3	3.1 予備調査の基本	63
1.3	3.2 予備調査の項目	64

1.3.3 予備調査の計画	67
1.3.4 予備調査の結果のとりまとめ	70
1.4 本 調 査	70
1.4.1 本調査の基本	70
1.4.2 本調査の項目	71
1.4.3 本調査の計画	72
1.4.4 本調査の結果のとりまとめ	75
第2章 地盤調査の方法	78
2.1 一 般	78
2.2 ボーリング	78
2.3 サウンディング	82
2.4 サンプリング	85
2.5 土質試験	88
2.6 岩石試験	89
2.7 載荷試験	92
2.8 地下水調査	94
2.8.1 地下水位測定	94
2.8.2 透水試験	95
2.8.3 岩盤の透水試験	95
2.9 物理探査	96
2.9.1 物理探查	98
2.9.2 物理検層 第2章 地般共物の特性体	100
第3章 地盤材料の特性値 3.1 記載 Fの地盤材料の区分	103 103
3.1 設計上の地盤材料の区分 3.1.1 土砂部の区分	103
3.1.2 岩盤部の区分	103
3.2 地盤定数の特性値の設定における留意点	105
3.3 地盤の物理特性	106
3.4 地盤のせん断強度特性	100
3.4.1 地盤のせん断強度に対する影響要因	107
3.4.2 粘性土のせん断強度	112
3.4.3 砂質土のせん断強度	113
3.4.4 岩盤のせん断強度	113
3.5 地盤の変形特性	118
Ⅲ. 設計	125
第1章 基礎の設計一般	125
1.1 基礎の設計の基本	125
1.2 支持層の選定	127
1.3 基礎形式及び形状	130
1.4 地盤反力度及び変位の計算	131
1.5 設計における地盤調査結果の活用と留意点	134
1.5.1 道路橋の予備設計における地盤調査結果の活用	134
1.5.2 道路橋の詳細設計における地盤調査結果の活用	135
1.5.3 地盤調査結果の取り扱いに留意すべき条件・状況	136
第2章 深礎基礎の設計一般	138
2.1 深礎基礎の設計の基本	138

2.1.1 深礎基礎の安定に関する照査	138
2.1.2 深礎基礎の部材等の強度に関する照査	138
2.1.3 レベル2地震動を考慮する設計状況における	
耐荷性能に関する照査	140
2.1.4 深礎基礎の耐久性能に関する設計	142
2.2 深礎基礎の荷重分担	142
2.3 形状寸法及び配列	143
第3章 深礎基礎の安定に関する設計	147
3.1 基礎の変位の制限	147
3.2 鉛直荷重に対する支持の限界状態	150
3.3 水平荷重に対する抵抗の限界状態	156
3.4 地盤反力度,変位及び断面力の計算	161
3.4.1 一 般	161
3.4.2 地盤反力係数	171
3.4.3 基礎前面の水平地盤反力度の上限値	181
3.4.4 基礎側面及び周面のせん断地盤反力度の上限値	190
第4章 部材及び接合部の設計	194
4.1 組杭深礎基礎	194
4.2 柱状体深礎基礎	200
第5章 レベル2地震動を考慮する設計状況における設計	206
5.1 基礎に作用する力	206
5.1.1 橋脚基礎に作用する力	206
5.1.2 橋台及び橋台基礎に作用する力	208
5.2 レベル2地震動を考慮する設計状況における設計	210
5.2.1 深礎基礎に対する変位の照査	210
5.2.2 せん断力を受ける基礎本体の照査	211
5.2.3 組杭深礎基礎のフーチングの照査	211
5.2.4 組杭深礎基礎の深礎杭とフーチングの接合部の照査	212
5.3 基礎の降伏	212
5.4 レベル2地震動を考慮する設計状況における断面力,	
地盤反力度及び変位の計算	215
5.4.1 設計計算モデル	215
5.4.2 基礎の地盤抵抗要素	215
5.4.3 基礎本体の曲げ剛性	216
第6章 構造細目	219
6.1 鉄筋のかぶり 6.2 配数 MR	219
6.2 配筋細目 6.2.1 軸方向鉄筋	220 220
6.2.2 せん断補強鉄筋	220
第7章 土留構造の設計	221
7.1 土留構造の選定及び設計方針	224
7.1.1 土留構造の選定方針	224
7.1.2 土留構造の設計の基本	225
7.1.3 土留構造の天端の処理	226
7.2 設計土圧	227
7.3 材質及び許容応力度	228
7.3.1 ライナープレートによる土留構造	228

7.3.2 モルタルライニング又は吹付けコンクリートによる土留構造	228
7.3.3 吹付けコンクリートとロックボルトによる土留構造	229
第8章 設計図等に記載すべき事項	230
8.1 一 般	230
8.2 設計で前提とした材料の条件	230
8.3 設計で前提とした施工の条件	231
8.4 設計で前提とした維持管理の条件	231
8.5 設計において用いた参考図書	232
Ⅳ. 施 工	233
第1章 一 般	233
1.1 関連する法令	233
1.2 参考図書の取り扱い	235
1.3 施工要領書	235
1.3.1 一 般	235
1.3.2 工程計画	238
1.3.3 品質管理計画	242
1.3.4 安全衛生計画	242
1.3.5 環境対策	245
1.4 検 査	248
1.4.1 材 料	249
1.4.2 施 工	251
1.5 施工に関する情報の記録	252
第2章 深礎基礎の施工 2.1 施工一般	254
2.1 施工一般 2.1.1 施工機械器具の選定	254 254
2.1.1 旭工機械奋兵の選及 2.1.2 電力・排水設備	254 254
2.1.2 电力 サハ設備 2.1.3 換気設備	254
2.1.4 昇降設備	255
2.1.5 作業ヤード	255
2.1.6 湧水及び地下水の処理	256
2.2 掘 削	257
2.2.1 掘削一般	257
2.2.2 孔 口	258
2.2.3 掘削方法	260
2.2.4 掘削土の搬出	261
2.2.5 孔底処理	262
2.3 土留構造	262
2.3.1 土留構造の種類	262
2.3.2 ライナープレート	264
2.3.3 モルタルライニング	267
2.3.4 吹付けコンクリートによる構造	268
2.3.5 吹付けコンクリートとロックボルトによる構造	269
2.4 鉄筋工	269
2.4.1 — 般	269
2.4.2 鉄筋組立て	270
2.4.3 組立用鋼材	272

2.4.4 作業足場	274
2.5 コンクリートエ	275
2.6 施工管理	277
2.6.1 掘削管理	277
2.6.2 土留構造の管理	279
2.6.3 施工記録	280
参考資料	281
1. 地質・地盤リスクと地盤調査の例	283
2. 地盤調査の調査位置及び数量例	291
3. 多段階三軸圧縮試験	294
4. 岩盤の単位体積重量の測定例	301
5. 岩盤の地盤定数の測定例	302
6. 柱状体深礎基礎の躯体接合部の数値解析例	309
7. 深礎基礎の土留めの設計例	312
8. 爆破掘削	325
9. 組立用鋼材の設計計算例	329