【道路橋の耐震設計に関する資料】

【A4判 472頁 本体価格 2,000円】

平成9年3月11日初版第1刷発行

令和3年12月17日 第6刷発行

目 次

1. 本資料の利用に際して	1- 1
2. 鉄筋コンクリート橋脚を用いた場合の設計計算例	2- 1
2.1 設計条件	2- 1
2.2 震度法による耐震設計	2- 6
2.2.1 固有周期、震度法に用いる設計水平震度および	
下部構造が支持する上部構造部分の重量の算定	2- 6
2.2.2 杭基礎の安定計算	2- 19
2.2.3 橋脚各部の設計	2- 22
2.2.4 杭本体の設計	2- 35
2.3 地震時保有水平耐力法による耐震設計	2- 37
2.3.1 固有周期、地震時保有水平耐力法に用いる設計水平震度	
および下部構造が支持する上部構造部分の重量の算定	2- 37
2.3.2 橋脚躯体の安全性の判定	2- 46
2.3.3 杭基礎の安全性の判定	2- 59
2.3.4 フーチングの照査	2- 82
2.4 支承部の設計	2- 88
2.4.1 設計条件	2- 89
2.4.2 ゴム支承本体の設計	2- 91
2.4.3 支承取り付け部の設計	2-109
2.5 橋座の設計	2-121
2.6 落橋防止システムの設計	2-123
2.6.1 けたかかり長	2-123
2.6.2 けた端部の遊間	2-124
2.6.3 落橋防止構造の設計	2-125
2.6.4 伸縮装置の設計移動量	2-134
2.6.5 橋台支承固定部の設計	2-135
2.6.6 その他の落橋防止システムの設計計算例	2-137
3. 鉄筋コンクリートラーメン橋脚の設計計算例	3- 1
3.1 設計条件	3- 1
3.2 震度法による耐震設計	3- 5
3.2.1 固有周期、震度法に用いる設計水平震度および	
下部構造が支持する上部構造部分の重量の算定	3- 5
3.2.2 橋脚躯体の設計	3- 5
3.3 地震時保有水平耐力法による耐震設計	3- 17
3.3.1 固有周期、地震時保有水平耐力法に用いる設計水平震度	
および下部構造が支持する上部構造部分の重量の算定	3- 17
3.3.2 橋脚躯体の安全性の判定	3- 20
4. 鋼製橋脚を用いた場合の設計計算例	4- 1
4.1 コンクリートを充填した鋼製橋脚を用いた場合の設計計算例	4- 1
4.1.1 設計条件	4- 1
4.1.2 震度法による耐震設計	4- 6

4.1.3 地震時保有水平耐力法による耐震設計 4.1.4 支承部の設計 4.1.5 落橋防止システムの設計 4.2 コンクリートを充填しない鋼製橋脚を用いた場合の設計計算例 4.2.1 設計条件 4.2.2 震度法による耐震設計 4.2.3 動的解析による橋脚の耐震性の判定	4- 17 4- 47 4- 48 4- 50 4- 50 4- 54 4- 58
5. 免震設計を用いた場合の設計計算例 5.1 設計条件 5.2 免震支承の設計 5.3 鉄筋コンクリート橋脚の設計 5.4 地震時保有水平耐力法による直接基礎のフーチングの照査 5.5 動的解析による照査 5.6 免震設計を用いた場合の構造細目 参考資料	5- 1 5- 1 5- 5 5- 15 5- 19 5- 21 5- 34
6. 地震時に不安定となる地盤がある場合の設計計算例 6.1 設計条件 6.2 液状化の判定 6.3 震度法による橋脚基礎の設計結果 6.4 橋に影響を与える液状化が生じる場合の 地震時保有水平耐力法による杭基礎の耐震設計 6.4.1 地盤の不安定化が生じない場合 6.4.2 橋に影響を与える液状化が生じる場合 6.5 橋に影響を与える流動化が生じる場合の 地震時保有水平耐力法による杭基礎の耐震設計	6- 1 6- 1 6- 6 6- 8 6- 10 6- 25 6- 36
7. ケーソン基礎の設計計算例7.1 設計条件7.2 耐震法によるケーソン基礎の設計7.3 地震時保有水平耐力法によるケーソン基礎の安全性の判定 参考資料	7- 1 7- 1 7- 5 7- 19 7- 40
8. 鋼管矢板基礎の設計計算例8.1 設計条件8.2 震度法による鋼管矢板基礎の設計8.3 地震時保有水平耐力法による鋼管矢板基礎の安全性の判定 参考資料	8- 1 8- 1 8- 5 8- 23 8- 45
9. PHC杭基礎の設計計算例 9.1 設計条件 9.2 耐震法による杭基礎の設計 9.3 地震時保有水平耐力法による杭基礎の安全性の判定	9- 1 9- 1 9- 5 9- 10
10. 時刻歴応答解析に用いる標準地震入力例	10- 1