Road Network of Tokyo Metropolitan Government طرق طوكبو

About Tokyo Metropolitan Government

- Population: Approx. 13,784,000
- Area: Approx. 2,193 km²
- Total prefectural road network: 2,371 km (Asphalt: Approx. 91% Concrete: Approx. 4%)
- Typical pavement structure: See the figure below (design traffic volume of 3,000 vehicles/day, in one or more directions)

Environmental pavement implementation history

1995: Full-scale introduction of low-noise paving on prefectural roads designated under "Act on Improvement of Areas Along Trunk Roads"

- **2005**: Standardization and full-scale introduction of double-layer lownoise paving
- **2005**: Started a full-scale implementation of water-retaining paving
- **2008**: Started a full-scale implementation of heat-blocking paving
- **2014**: Heat-blocking paving designated as an official heat control measure for prefectural roads including those to be used for the Tokyo 2020 Olympic and Paralympic Games marathon routes, under the "Tokyo Metropolitan Government Long-term Vision" **2015**: Heat-blocking paving installation started as a heat control measure for prefectural roads including those to be used for Tokyo 2020 Olympic and Paralympic Games marathon routes

TOKYO METROPOLITAN GOVERNMENT

Car Road Paving Policy of Tokyo Metropolitan Government نظام تعبيد طرق السير في طوكيو

Diverse needs of various Tokyo residents including road users and people living near main thoroughfares, etc.

Control-required areas

 Areas where road traffic noise control is required. Areas where road drainage measure is required

O Areas where the road traffic noise level exceeds the environmental threshold

Applicable pavement types

★ Low-noise (waterdraining) pavement

Pavement with noise reduction and rainwater

O Areas where noise control is urgently required

O Newly constructed major roads

O Areas where road drainage measure is urgently required

Areas where urban heat island effect control is required splashing reduction functionality

★ Double-layer low noise pavement

Pavement with even greater noise reduction functionality harrow

★ Water-retaining and/or heat-blocking pavements

Pavement with road surface heat reduction functionality Received and a second and a sec

Areas with heavy traffic where a prolonged road surface repair is difficult to accommodate

Overall Rc structure Durability imp

Additional functionality

★ Long service lifepavement

Pavement with longterm durability *1

★ Polymer-improved

*1. High-durability paving that does not require repairs for a long period of time

TOKYO METROPOLITAN GOVERNMENT

Double-layer Low Noise Paving for Noise Control تدابير الضوضاء تعبيد الطرق يطبقتين خافضتين للضوضاء

Dense-graded asphalt pavement (Common pavement)

Common low-noise pavement

Double-layer low noise pavement

Fine-grain, high-void-ratio pavement to reduce tire surface vibration noise

How a double-layer low noise pavement works

Two types of high void ratio (approx. 20%) porous asphalt compositions with different maximum grain diameters are layered, with the finer-grain composition placed on top of the coarser-grain composition. This provides greater noise reduction effect than that of normal low-noise pavement. Double-layer low noise pavement has been applied to road sections where noise control is urgently required, including Ring Roads 7 and 8.

Parameter

	Double-layer low noise	Existing low-noise	Common
	pavement	pavement	pavement
Surface layer	Upper layer: Smaller maximum aggregate diameter of 5 mm Air void ratio of 18% to 25% Lower layer: Larger maximum	Maximum aggregate diameter: 13 mm	Maximum aggregate diameter: 13 mm
	aggregate diameter of 13 mm	Air void ratio:	Air void ratio:
	Air void ratio of 16% to 22%	16% to 22%	3% to 6%
Tire noise	86 dB	89 dB	96 dB

- * Tire noise measured according to the procedure described in "Paving Performance Evaluation Method" (issued by Japan Road Association).
- * Tire noise measured as part of the Tokyo Metropolitan Government trial paving project

TOKYO METROPOLITAN GOVERNMENT

Water-retaining Paying for Heat Control تدابير الحرارة تعبيد الطرق الحافظة للماء

Tokyo-type waterretaining pavement

The upper layer offers noise reduction effect while the lower layer provides road surface heat reduction effect.

Water-retaining pavement

Water-retaining material, injected into the voids in the pavement, absorbs and retains rainwater and other incoming water. The heat of vaporization of this retained water when it evaporates under sunlight reduces road surface heat so that less heat is radiated from the pavement into the atmosphere.

Performance requirements

	Parameter	Immediately after road completion
	Road surface heat reduction	Indoor irradiation test result: Heat reduced by 4°C or greater
Water- retaining	Water retention capacity	Measured after submerged under water for 24 hours 5.0 kg/m ² or greater
pavement	Road surface skid resistance	Pendulum-type skid resistance tester 60 BPN or greater
	Water penetration through the road surface	On-site permeation test 500 ml/15 s or greater

TOKYO METROPOLITAN GOVERNMENT

Heat and Urban Heat Island Effect in Tokyo ظاهرة الجزر الحرارية الحضرية والحرارة في طوكيو

Urban heat island effect in Tokyo

- Tokyo's temperatures are rising
- \cdot Temperatures are especially high in central Tokyo
- Necessary to comprehensively advance measures including heat island countermeasures to improve Tokyo's thermal environment

Source: Handbook to Summer Heat Control" (issued by Bureau of Environment, Tokyo Metropolitan Government)

Annual average temperature deviations for Tokyo, Japan, and the world

Heat-causing factors and their effects

Heat-causing factors in urban areas can be classified into the following two types:

 Heat emission from air conditioners and cars

 \bigcirc Heat retention in buildings and the ground

In addition to the above, people are affected by heat (heatstroke) as a result of:

Heat reception from sunlight and also from

Source: Handbook to Summer Heat Control" (issued by Bureau of Environment, Tokyo Metropolitan Government)

Distribution of average daily lows (°C) (July 1, 2013 - September 30, 2013)

Heat control principles

To alleviate heat in an urban area, it is important to make effort:

- not to emit heat by reducing energy usage.
- not to retain heat by improving the building surface and the ground by having greenery, using water and employing other assisting technologies.

In addition to the above, to alleviate heat

Source: "Handbook to Summer Heat Control" (issued by Bureau of Environment, Tokyo Metropolitan Government)

TOKYO METROPOLITAN GOVERNMENT

http://www.metro.tokyo.jp/english/index.html

Source: "Handbook to Summer Heat Control" (issued by Bureau of Environment, Tokyo Metropolitan Government)

Heat Control Principles and Techniques طريقة التفكير في تدايير الحرارة وتقنيتها

heat

Source: "Handbook to Summer Heat Control" (issued by Bureau of Environment, Tokyo Metropolitan Government)

Source: "Handbook to Summer Heat Control" (issued by Bureau of Environment, Tokyo Metropolitan Government)

Note 1: Heat-blocking buildings may potentially become a heat emission source in wintertime (by increasing the amount of exhaust heat).

*This document should not be considered as an evidence to validate the heat-blocking and water retention effects on the urban heat island effect.

TOKYO METROPOLITAN GOVERNMENT

Solar Heat-Blocking Pavement تعبيد الطرق المانع لحرارة الشمس

Effects of Solar Heat-Blocking Pavement

Mitigates the rise in road surface temperatures by up to 8°C compared to standard asphalt

Infrared Image

Structure

A coating of special paint (heat-blocking material) that reflects the sun's near-infrared rays is applied to the surface of the pavement

TOKYO METROPOLITAN GOVERNMENT

http://www.metro.tokyo.jp/english/index.html

Low

Solar Heat-Blocking Pavement تعبيد الطرق المانع لحرارة الشمس

Construction Flow

Preparation (Grinding/Cleaning • masking) Construction of 1st layer / 2nd layer Application of asphalt pavement heat-blocking material Spraying of anti-slip aggregate

Application of heat-blocking material (Scattering prevention cover use)

Substantivity of performance

TOKYO METROPOLITAN GOVERNMENT

